Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Language
Year range
1.
Braz. j. biol ; 75(2): 477-483, 05/2015. graf
Article in English | LILACS | ID: lil-749690

ABSTRACT

Regnellidium diphyllum Lindm. is a heterosporous fern which grows in shallow waters and wetlands, and water pollution contributes to its vulnerability. Environmental lead contamination is mostly caused by industrial and agricultural residues as well as domestic sewage. Given its persistence in the environment, lead can cause important toxicity in living organisms. Megaspore germination and the initial growth of R. diphyllum sporophytes were assessed in Meyer's solution with lead nitrate (Pb(NO3)2) concentrations of 0 (control), 1, 5, 10 and 50 mg L–1. The study was conducted in a growth chamber at 25±1°C and a 12 hour photoperiod with a nominal irradiance of 100 μmol m–2 s–1, for 28 days. Lead concentration in sporophytes was assessed using atomic absorption spectrometry. In the absence of lead, 74% of spores germinated, while significantly lower germination percentages were observed in Pb(NO3)2 concentrations of 1, 10 and 50 mg L–1. The presence of lead did not significantly influence root growth. At 28 days, primary leaf development was significantly lower in Pb(NO3)2 concentrations of 5 mg L–1 and higher in relation to the control. The length of secondary leaves did not significantly differ between sporophytes exposed to different concentrations of lead and those of the control at 28 days. Sporophytes exposed to 10 and 50 mg L–1 Pb(NO3)2 accumulated 1129 mg kg–1 and 5145 mg kg–1 of Pb, respectively. The presence of high levels of lead in R. diphyllum sporophytes did not prevent initial development. Future studies should investigate the ability of the species to accumulate and tolerate high levels of lead in advanced stages of its development and in environmental conditions.


Regnellidium diphyllum Lindm. é uma samambaia heterosporada que se desenvolve em águas rasas ou em solos úmidos, sendo que a poluição da água contribui para sua vulnerabilidade. A contaminação ambiental por chumbo ocorre principalmente por resíduos industriais e agrícolas, bem como por efluentes domésticos. Devido à sua persistência no ambiente, esse metal pode apresentar importante toxicidade aos organismos vivos. A germinação de megásporos e o desenvolvimento inicial de esporófitos de R. diphyllum foram avaliados em solução de Meyer com concentrações de 0 (controle), 1, 5, 10 e 50 mg L–1 de nitrato de chumbo (Pb(NO3)2). O estudo foi conduzido em câmara de germinação a 25±1 °C e fotoperíodo de 12 horas sob irradiância nominal de 100 μmol m–2 s–1, por 28 dias. A concentração de chumbo em esporófitos foi analisada por espectrometria de absorção atômica. Na ausência de chumbo, 74% dos esporos germinaram, enquanto que porcentagens de germinação significantemente menores foram observadas nas concentrações de 1, 10 e 50 mg L–1 de Pb(NO3)2. A presença de chumbo não influenciou significativamente o crescimento das raízes. O desenvolvimento das folhas primárias foi significativamente menor em relação ao controle a partir de 5 mg L–1 de Pb(NO3)2 aos 28 dias. O comprimento das folhas secundárias não diferiu significativamente entre esporófitos expostos às diferentes concentrações de chumbo e aqueles do controle, aos 28 dias. Esporófitos expostos a 10 e 50 mg L–1 de Pb(NO3)2 acumularam 1129 mg kg–1 e 5145 mg kg–1 de Pb, respectivamente. A presença de altas concentrações de chumbo nos esporófitos de R. diphyllum não impediu seu desenvolvimento inicial. Estudos futuros deverão investigar a capacidade de a espécie acumular e tolerar altas concentrações de chumbo em estádios avançados de desenvolvimento e também em condições ambientais.


Subject(s)
Germination/drug effects , Lead/toxicity , Marsileaceae/drug effects , Spores/drug effects , Marsileaceae/growth & development , Spectrophotometry, Atomic , Spores/growth & development
2.
Braz. j. biol ; 70(2): 361-366, May 2010. graf, tab
Article in English | LILACS | ID: lil-548261

ABSTRACT

Regnellidium diphyllum is considered as endangered, occurring in the State of Rio Grande do Sul, Brazil, and a few adjoining localities in Uruguay, Argentina and the State of Santa Catarina. It grows in wetlands frequently altered for agricultural activities. Herbicides based on 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in these fields. The effects of 2,4-D on the germination of megaspores and initial sporophytic development of R. diphyllum were investigated. Six concentrations of 2,4-D (0.32; 0.64; 1.92; 4.80; 9.60 and 19.20 mg.L-1), and the control (0.00 mg.L-1), were tested in vitro, using Meyer's medium. Cultures were maintained in a growth chamber at 24 ± 1 °C, under artificial light with nominal irradiance of 110 µmol.m-2/s and 16 hours photoperiod. Megaspore germination was lower at 9.60 and 19.20 mg.L-1 of 2,4-D (56 and 48 percent, respectively), compared with the control (68 percent). Herbicide concentrations of up to 1.92 mg.L-1 did not significantly decrease the number of sporophytes formed. At 19.20 mg.L-1, no sporophytes were formed. The lengths of the primary root, primary and secondary leaves were greater at concentrations of 0.32 and 0.64 mg.L-1 of 2,4-D. Low concentrations of 2,4-D do not affect germination rates and initial development of R. diphyllum in a significant way. However, higher concentrations (9.60 and 19.20 mg.L-1) affect substantially the germination of the megaspores and interfere with the establishment of the species.


Regnellidium diphyllum é considerada ameaçada, ocorrendo no Estado do Rio Grande do Sul, Brasil, e em algumas localidades vizinhas no Uruguai, na Argentina e no Estado de Santa Catarina. Cresce em áreas alagáveis, frequentemente alteradas para atividades agrícolas. Herbicidas baseados em ácido 2,4-diclorofenoxiacético (2,4-D) são largamente utilizados nestas plantações. Os efeitos do 2,4-D sobre a germinação de megásporos e o desenvolvimento esporofítico inicial de R. diphyllum foram investigados. Seis concentrações de 2,4-D (0,32; 0,64; 1,92; 4,80; 9,60 e 19,20 mg.L-1), além do controle (0,00 mg.L-1) foram testadas in vitro, utilizando meio de Meyer. As culturas foram mantidas em câmara de germinação a 24 ± 1 °C, sob luz artificial, com irradiância nominal de 110 mmol.m-2/s e fotoperíodo de 16 horas. A germinação de megásporos foi menor em 9,60 e 19,20 mg.L-1 de 2,4-D (56 e 48 por cento, respectivamente), comparada ao controle (68 por cento). Concentrações até 1,92 mg.L-1 não diminuíram significativamente o número de esporófitos formados. Em 19,20 mg.L-1, não houve formação de esporófitos. Os comprimentos da raiz primária e das folhas primária e secundária foram maiores em concentrações de 0,32 e 0,64 mg.L-1 de 2,4-D. Baixas concentrações de 2,4-D não afetam significantemente as taxas de germinação e o desenvolvimento inicial de R. diphyllum. Entretanto, maiores concentrações (9,60 e 19,20 mg.L-1) afetam substancialmente a germinação de megásporos e interferem no estabelecimento da espécie.


Subject(s)
Germination/drug effects , Herbicides/pharmacology , Marsileaceae/drug effects , Spores/drug effects , /pharmacology , Dose-Response Relationship, Drug , Marsileaceae/growth & development , Spores/growth & development
3.
J Environ Biol ; 2008 Jul; 29(4): 605-12
Article in English | IMSEAR | ID: sea-113560

ABSTRACT

This study was carried out to augment the colonization of marine benthic communities on artificial reef structure. Increasing marine pollution along with various natural hazards cause severe damages to marine algae and associated fauna. In recent years, artificial reefs have been deployed in coastal regions of several parts of the world in order to increase the marine productivity. They are mainly built with concrete materials, however their leachates have considerable impacts on algae. Therefore to increase the algal colonization five chemoattractants such as ferrous sulfate, zinc oxide, ammonium nitrate, sodium phosphate and ferrous lactate were screened against spores of a fouling alga, Ulva pertusa. FeSO4 / ZnO (8:2) and ferrous lactate coatings showed the highest spore attachment with 52 +/- 5.2 cm2 and 79.5 +/- 10.2 cm2 spores respectively (p<0.01). Furthermore using these chemoattractants, coating formulations were made and their performances were investigated at East coast (Ayajin harbor) and South coast (Meejo harbor) of Korea. A maximum fouling coverage (with green algae 25%, red algae 11.3% and brown algae 63.7%) was estimated from ferrous lactate coatings (p<0.01). Different composition of coating formulations and their chemoattractive properties were evaluated.


Subject(s)
Eukaryota/drug effects , Animals , Anthozoa , Biomimetics , Chemotactic Factors/chemistry , Coated Materials, Biocompatible/chemistry , Ferrous Compounds , Geography , Korea , Lactates , Marine Biology , Nitrates , Phosphates , Spores/drug effects , Zinc Oxide
4.
J Environ Biol ; 2008 Jul; 29(4): 621-7
Article in English | IMSEAR | ID: sea-113460

ABSTRACT

Algal spores respond to many environmental variables, especially to chemical "cues". This chemotactic response can be utilized to attract spores, thereby colonization of a new substrata is possible to be influenced. In this attempt, four chemoattractant candidates were screened against spores of Ulva pertusa to reveal their efficiencies. Attachment and subsequent germination of Ulva spores were effectively influenced by these chemoattractant candidates. In particular 100 microg cm2 of D-glucose coating was found to enhance spore attachment by > 150%. Furthermore, field investigations carried out with test panels, clearly indicate the chemoattractive properties of test coatings. In recent years, various anthropogenic activities and natural hazards cause detrimental impacts on the benthic algae and other fishery resources. Artificial reefs have been laid on many coastal regions to increase or restore marine resources. Chemoattractant coatings can be applied on artificial surfaces to increase the colonization of benthic forms. It also can be used in the mariculture devices. Influence of chemoattractants on Ulva spores and fouling biomass estimated on test panels are discussed.


Subject(s)
Adhesiveness/drug effects , Animals , Anthozoa , Biofilms , Biomass , Biomimetics , Chemotactic Factors/chemistry , Choline , Coated Materials, Biocompatible/chemistry , Glucose , Glycine , Marine Biology , Methanol , Microscopy, Fluorescence , Organic Chemicals/chemistry , Spores/drug effects , Time Factors , Ulva/drug effects
5.
J Environ Biol ; 2007 Apr; 28(2): 173-6
Article in English | IMSEAR | ID: sea-113656

ABSTRACT

In recent years, industrial pollutants and the mountain forest fire ashes released into seawater cause damage to the marine environment, mainly it reduces the algal productivity in the inter tidal region. To get recover from the stress due to pollutants and to increase the growth and development of biofouling algae (benthic organisms), Ecklonia cava extract was investigated for its biofouling attracting efficiency. Bioactive guided fractions of E. cava extract derived from column chromatography were tested against spore attachment of a fouling alga, Ulva pertusa. Fraction B showed increased spore attachment rate with a maximum of 92 +/- 5%. This fraction was further analysed on HPLC, GC-Mass and NMR, deduced as pentadecanoic acid.


Subject(s)
Phaeophyta/chemistry , Biological Products/isolation & purification , Fatty Acids/isolation & purification , Methanol/chemistry , Spores/drug effects , Ulva/drug effects
6.
J Environ Biol ; 2007 Jan; 28(1): 39-43
Article in English | IMSEAR | ID: sea-113357

ABSTRACT

Screening of test chemicals or formulations for antifouling (AF) activity is important to get first hand information on their nontoxic repelling activities. Especially spores of a fouling alga, Ulva pertusa were used in this study to test the AF efficiency of five organic chemicals. Coatings made with 100 microg cm2 of citral and eugenol significantly inhibited the spore attachment. A low concentration (1 microg cm2) of solanesol exhibited effective AF activity against spore attachment. Spore germination was sensitive to different AF candidates screened in this study. Based on the attachment and germination response of Ulva pertusa spores, AF efficiency of five organic AF candidates is discussed.


Subject(s)
Acetates/pharmacology , Eugenol/pharmacology , Germination/drug effects , Monoterpenes/pharmacology , Spores/drug effects , Terpenes/pharmacology , Ulva/drug effects
7.
Indian J Exp Biol ; 2001 Nov; 39(11): 1194-8
Article in English | IMSEAR | ID: sea-57391

ABSTRACT

Extract from root, stem and leaf of L. camara proved inhibitory for germination of the spores of A. angusta. Leaf extract was found to exhibit maximum allelopathic potentiality followed by stem and root extract and may be interpreted to be the result of phytotoxic substances which are possibly synthesized in the leaf and translocated to other organs.


Subject(s)
Magnoliopsida/toxicity , Germination , India , Plant Extracts/toxicity , Plant Physiological Phenomena , Plants/drug effects , Spores/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL